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Abstract. Identifying amnestic mild cognitive impairment (aMCI) is of great clinical importance because aMCI is a putative
prodromal stage of Alzheimer’s disease. The present study aimed to explore the feasibility of accurately identifying aMCI with
a magnetic resonance imaging (MRI) biomarker. We integrated measures of both gray matter (GM) abnormalities derived from
structural MRI and white matter (WM) alterations acquired from diffusion tensor imaging at the voxel level across the entire
brain. In particular, multi-modal brain features, including GM volume, WM fractional anisotropy, and mean diffusivity, were
extracted from a relatively large sample of 64 Han Chinese aMCI patients and 64 matched controls. Then, support vector machine
classifiers for GM volume, FA, and MD were fused to distinguish the aMCI patients from the controls. The fused classifier was
evaluated with the leave-one-out and the 10-fold cross-validations, and the classifier had an accuracy of 83.59% and an area
under the curve of 0.862. The most discriminative regions of GM were mainly located in the medial temporal lobe, temporal
lobe, precuneus, cingulate gyrus, parietal lobe, and frontal lobe, whereas the most discriminative regions of WM were mainly
located in the corpus callosum, cingulum, corona radiata, frontal lobe, and parietal lobe. Our findings suggest that aMCI is
characterized by a distributed pattern of GM abnormalities and WM alterations that represent discriminative power and reflect
relevant pathological changes in the brain, and these changes further highlight the advantage of multi-modal feature integration
for identifying aMCI.
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Table 1
Demographics and behavioral profiles of the aMCI and the NC groups

aMCI Group NC Group Group Comparison
(n = 64) (n = 64) (p values)

Gender (M/F) 28/36 26/38 0.723a

Age, years 67.141 ± 9.304 64.797 ± 7.595 0.121b

Education, years 9.891 ± 4.254 11.078 ± 4.887 0.145b

MMSE 23.781 ± 3.089 28.016 ± 2.229 <0.0001b

MoCA 19.122 ± 3.592 25.979 ± 3.173 <0.0001b

CDR 0.5 0 –
AVLT-Immediate Recall 1 3.625 ± 1.507 7.000 ± 2.218 <0.0001b

AVLT-Immediate Recall 2 5.172 ± 1.760 9.531 ± 2.330 <0.0001b

AVLT-Immediate Recall 3 6.156 ± 1.913 10.766 ± 2.238 <0.0001b

AVLT-Delayed Recall 3.000 ± 2.404 9.969 ± 3.013 <0.0001b

AVLT-Recognition 6.953 ± 3.731 11.703 ± 3.120 <0.0001b

aMCI, amnestic Mild Cognitive Impairment; NC, Normal Control; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive
assessment; CDR, Clinical Dementia Rating Scale; AVLT, Auditory Verbal Learning Test. Age, education, MMSE, MoCA, and AVLT are
presented as the mean ± SD. aThe p value was obtained using a two-tail chi-square test. bThe p value was obtained using a two-sample two-tail
t test. Fifteen aMCI patients and 17 controls did not have MoCA scores.

INTRODUCTION

Alzheimer’s disease (AD) is a degenerative dis-
ease that accounts for the majority of patients with
dementia. With the population aging, the incidence
of AD has substantially increased [1, 2]. As a puta-
tive prodromal stage of AD, amnestic mild cognitive
impairment (aMCI) has attracted much attention. Early
interventions for aMCI have been demonstrated to be
capable of decreasing or delaying the development
of AD [3]. Therefore, accurately identifying aMCI
patients is of great clinical value. To facilitate the iden-
tification of aMCI, objective neurobiological markers,
e.g., those derived from neuroimaging techniques, are
highly desirable.

Machine learning and pattern recognition tech-
niques have been used to explore the potential
neuroimaging biomarkers of aMCI. With these tech-
niques, several imaging modalities have been used to
discriminate aMCI patients from normal controls. For
example, some studies have employed structural mag-
netic resonance imaging (sMRI) data to extract cortical
morphological information (e.g., cortical volumes and
cortical thickness) to distinguish aMCI patients from
controls [4, 5], and the characterizations of white mat-
ter (WM) microstructures and whole-brain anatomical
connectivity based on diffusion tensor imaging (DTI)
data have been used to identify aMCI patients [6, 7].

However, the majority of discriminative studies of
aMCI have focused on a single modality. Multiple
modalities might provide complementary information.
For example, sMRI data contain rich morphological
information about the brain tissues and have been
widely used to study GM abnormalities in aMCI

patients [8, 9], whereas DTI data can be used to index
the different microstructural properties of the WM, and
many studies have reported that there was reduced frac-
tional anisotropy (FA) and increased mean diffusivity
(MD) in aMCI patients compared to normal controls
[7, 10].

The current study explored the feasibility of inte-
grating structural MRI and DTI to more accurately
distinguish aMCI patients from controls. To date, only
one published study, to our knowledge, has used both
sMRI and DTI for aMCI classification. However, this
study reported limited predictive power (accuracy:
71.09% and sensitivity: 51.96%) [11]. The low accu-
racy of this study might have been related to the feature
definitions, which were based on the neuroimaging
metrics of a limited number of regions of interest. To
overcome this limitation, the present study integrated
whole-brain voxel-based maps, which were acquired
from both sMRI and DTI, as features to identify aMCI
patients. Specifically, a fused classifier was applied to
a large cohort of Han Chinese with aMCI and control
subjects.

MATERIALS AND METHODS

Participants

Seventy-three aMCI patients and 72 matched normal
controls (NC) participated in this study. All subjects
were right-handed native Chinese speakers. The aMCI
subjects were all recruited from the memory clinic
at Xuan Wu Hospital, Beijing, China, and the NC
subjects were recruited from nearby communities.
Written informed consent was obtained from all sub-
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jects before data collection. This study was approved
by the Research Ethics Review Board of Xuan Wu
Hospital. The current study is a sub-project of a larger
research project, and the detailed inclusion and exclu-
sion criteria for the aMCI patients and controls have
been described in our previous papers [4, 12]. Con-
firmation of diagnosis for all subjects was made by
the consensus of at least two experienced neurologists
in the Neurology Department of Xuan Wu Hospital.
The diagnoses were based on the available data from
the neuropsychological assessment evaluation, a bat-
tery of general neurological examinations, collateral
and subject symptoms as well as functional capac-
ity reports. Specifically, all aMCI subjects met the
following inclusion criteria: (1) memory complaints,
preferably confirmed by an informant; (2) objective
memory impairment adjusted for age and education;
(3) normal or near-normal performance in general cog-
nitive functioning and no, or minimal, impairments of
daily life activities; (4) a Clinical Dementia Rating
(CDR) score of 0.5; and (5) not meeting the crite-
ria for dementia from the Diagnostic and Statistical
Manual of Mental Disorders, fourth edition, revised
(DSM-IV). The controls did not have psychiatric or
neurological illnesses, which was confirmed using the
Structured Interview for DSM-IV Non-Patient Edition.
Subjects with any of the following clinical characteris-
tics, which were assessed based on clinical evaluations
and medical records, were excluded: (1) vascular cog-
nitive impairment (Hachinski ischemic scale score ≥4
points); (2) severe depression (Hamilton Depression
Rating Scale score >24 points); (3) other neurologi-
cal disorders, including a brain tumor, traumatic brain
injury, Parkinson’s disease, encephalitis or epilepsy;
(4) other systemic diseases, such as thyroid dysfunc-
tion, severe anemia, chronic diarrhea and malnutrition,
liver or kidney dysfunction, carbon monoxide poi-
soning, syphilis or human immunodeficiency virus
infection; (5) a history of psychosis or congenital
mental growth retardation; (6) obvious abnormalities
in magnetic resonance images, such as leukoaraiosis
and infarction; (7) alcohol or drug abuse; (8) obvious
impairments of daily life activities (Activity of Daily
Living Scale score ≥23 points if age <75, or ≥25 points
if age ≥75); and (9) severe hearing or vision impair-
ment that made the subject unable to cooperate with
examinations.

Two aMCI patients and two controls lacked DTI
data whereas one aMCI patient lacked sMRI data.
These individuals were removed from the study. Addi-
tionally, two aMCI patients and four controls were
excluded because the scanning parameters of their

sMRIs were inconsistent with others. However, there
was a significant difference in age of the remaining
subjects between the two groups. We used the inter-
section of the age range for the two groups (47 75) as
the threshold and removed individuals whose age was
out of this range. Therefore, four aMCI subjects and
two controls were excluded. Overall, 64 aMCI partic-
ipants and 64 NC were included in the analysis. The
clinical and demographic data for these participants are
shown in Table 1.

Image acquisition

All scans were performed using the 3-T Siemens
Tim Trio MRI scanner in Xuan Wu Hospital,
Beijing, China. Three-dimensional, high-resolution,
T1-weighted images were obtained using a three-
dimensional magnetization prepared rapid gradient
echo (MP-RAGE) sequence with the following param-
eters: slice thickness, 1 mm; no gap; 176 sagittal slices;
repetition time (TR), 1900 ms; echo time (TE), 2.2 ms;
flip angle, 9◦; acquisition matrix, 256 × 224; field of
view (FOV), 256 × 224 mm2; and resolution, 1 × 1 × 1
mm3. The DTI data were acquired using a single-
shot echo-planar imaging-based sequence with the
following parameters: slice thickness, 2 mm; no gap;
60 axial slices; TR, 11000 ms; TE, 98 ms; flip angle,
90◦; one acquisition for 17 subjects and three repeti-
tive acquisitions for the other 111 subjects; acquisition
matrix, 128 × 116; FOV, 256 × 232 mm2; resolution,
2 × 2 × 2 mm3; and 30 non-linear diffusion weighting
directions with b = 1000 s/mm2 and one image with-
out diffusion weighting (i.e., b = 0 s/mm2). According
to the MRI images, there were small infarctions or
white matter hyperintensity in individuals from both
the aMCI and the NC groups, but there was not a
noticeable group difference in the frequency or spatial
locations of these phenomena within the brain.

Image preprocessing (Feature extraction)

Gray matter volume (GMV)
For each individual, a GMV map in the MNI space

was generated using the VBM8 toolbox (http://dbm.
neuro.uni-jena.de/vbm/) in SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/). Specifically, the following process-
ing steps were completed: (1) each subject’s image
was normalized to a template and then segmented into
GM, WM, and cerebrospinal fluid using the New Seg-
ment toolbox [13]; (2) The GM partition was registered
to a custom template using DARTEL (Diffeomorphic
Anatomical Registrations Through Exponentiated Lie

http://dbm.neuro.uni-jena.de/vbm/
http://dbm.neuro.uni-jena.de/vbm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Algebra) with a default template with a 1.5 × 1.5 × 1.5
mm3 resolution [14]; and (3) affine transformation and
non-linear warping were applied to modulate normal-
ized GM and the GMV maps were acquired in the
standard space. In the GMV map, the value of each
voxel represents the absolute volume of GM in the
native space. Next, the acquired GMV map with a
voxel size of 1.5 × 1.5 × 1.5 mm3 was smoothed with
a 6-mm Gaussian kernel.

WM diffusion metrics
The processing of the DTI dataset was implemented

with PANDA (http://www.nitrc.org/projects/panda),
which is a Matlab toolbox for the pipeline analysis
of diffusion images [15]. Briefly, the data processing
included the following: (1) skull removal and brain
mask estimation; (2) eddy-current and head motion
correction; (3) averaging of three acquisitions for the
111 subjects and using one acquisition for the other 17
subjects; (4) calculation of the diffusion tensor metrics;
and (5) registration of all of the individual images to
a standard space with a target voxel size of 2 × 2 × 2
mm3. Finally, the FA and MD images were smoothed
with a 6-mm Gaussian kernel.

After data preprocessing, the GMV, FA, and MD
maps that represent GM volume, fiber organiza-

tion/directionality and tissue density, respectively,
were acquired. To remove unneeded voxels, averaged
GMD and FA maps were produced across all subjects,
and a threshold value of 0.2 was applied to both the
averaged GMD and FA maps. A GM mask and a WM
mask were obtained. The following GMV analysis was
restricted to the GM mask, and the FA/MD analysis
was restricted to the WM mask.

Discriminative analysis
The flowchart of the proposed classification frame-

work is shown in Fig. 1. Specifically, feature selection
was applied to select a small set of features for each
metric (i.e., GMV, FA, and MD). Next, three support
vector machine (SVM) classifiers were trained with
the selected features, and the sum rule was applied to
combine their decisions. Leave-one-out and 10-fold
cross-validations were used to estimate the perfor-
mance of the classifiers. Finally, we identified the most
discriminative features.

Feature selection
Each voxel in the GMV, FA, or MD map was a fea-

ture for classifying the aMCI and the control groups
in the present study. The dimensionality of the fea-
ture space was high and non-informative noise was

Fig. 1. The flowchart of the proposed classification framework.

http://www.nitrc.org/projects/panda
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present. Many studies have demonstrated that remov-
ing these non-informative features always improves
classification performance [16, 17]. Therefore, uni-
variate filtering was adopted in this study for feature
selection. Specifically, a two-sample, two-tailed t-test
was applied to each voxel, and the features with signif-
icant differences (p < 0.05, uncorrected) were retained
[18, 19]. This feature selection process was performed
on the training set to avoid over-fitting the classifier.

SVM-based classification
Linear SVM was used to classify the aMCI and

NC groups based on the three metrics (GMV, FA, and
MD). SVMs [20] are currently the most widely used
supervised learning method. They minimize empirical
classification errors by taking into account the com-
plexity of the model. The complexity was controlled by
identifying the hyperplane with the maximum margin.
The margin is the distance separating the hyperplane
from the closet training samples, which are called sup-
port vectors. These support vectors specify the final
separating hyperplane. The linear SVM was used in
this study to avoid over-fitting and to allow for the
direct extraction of the weight vectors as indices of the
importance of the features. The parameter C, which
controls the trade-off between empirical classification
errors and the complexity of the model, was set at the
default value (C = 1). The LIBSVM toolbox for Mat-
lab was used to perform the linear SVM classification
(http://www.csie.ntu.edu.tw/ cjlin/libsvm/) [21].

Classifier fusion
Generally, a fused classifier that combines the

predicted results of multiple classifiers can achieve
superior performance if the base classifiers are accu-
rate and diverse [22–24]. Model diversity, which is the
key feature of fused classifiers, indicates the extent to
which the individual classifiers make errors in different
instances. A commonly used method of adding diver-
sity is to combine several different metrics that reflect
different aspects and might complement each other [18,
25]. A fused classifier that combined the three classi-
fiers (i.e., the GMV-based, FA-based and MD-based
classifiers) via the sum rule was used in this study
[22]. The final label was determined by the sum of the
classification score for each base classifier (y = wx+b):

F (xi) = sign

(
3∑

k=1

yk(xk
i )

)
(1)

where xi = {xk
i , k = 1, 2, 3

}
is a feature vector of

the three metrics of the i-th test sample, xk
i is a feature

vector of the k-th metric, yk is the classification score
of its corresponding classifier, and F (xi) is the final
label of the i-th test sample.

Performance evaluation
Leave-one-out cross-validation (LOOCV) was used

to validate the performance of the classifiers. LOOCV
can provide a good estimation of the generalizability
of the classifiers [4, 17]. In each LOOCV fold, one
subject was first left out as the testing subject, and
the remaining subjects were used for training a fused
classifier. Next, the classifier was used to classify the
testing subject. This procedure was repeated such that
each subject in the sample was used once as the testing
subject.

Additionally, we also evaluated the fused classifier
using 10-fold cross-validation. Specially, the full data
set was randomly partitioned into 10 subsets, of which
1 subset was used as the test data, and the remaining
9 subsets were used as training data. This procedure
was repeated 10 times to make sure each fold has been
used once as the testing set. Because the full data were
randomly divided into 10 subsets, the performance
may depend on the data division. Therefore, the 10-
fold cross-validation was repeated 100 times, and the
results were averaged to produce a final classification
performance.

Accuracy, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) were
used as quantitative assessments of the generalizability
of the classifier. Accuracy is the proportion of sub-
jects that were correctly classified into the aMCI or the
NC group. Sensitivity and specificity were the propor-
tions of the aMCI and the NC participants who were
correctly classified, respectively. PPV and NPV were
the proportions of correct aMCI predictions and NC
predictions, respectively.

A receiver operating characteristics (ROC) graph
was also employed to evaluate the performance of
the classifier [26]. Taking each subject’s classifica-
tion score as a threshold, the ROC graph of the fused
classifier was visualized. The area under a ROC curve
(AUC) is a commonly used quantitative assessment of
the diagnostic power of a predictive model.

The permutation test was applied to determine
whether the accuracy and the AUC of the fused classi-
fier were significantly higher than the values expected
by chance. Specifically, we permuted the class labels
(aMCI or control) across the entire sample 2,000 times
without replacement, and each time we performed the
entire LOOCV classification process. The p value for
the accuracy or AUC was calculated by dividing the

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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numberofpermutations that showedahighervalue than
the actual value for the real sample by the total number
of permutations (i.e., 2,000).

The most discriminative features
In each fold of the LOOCV, the feature selection was

based on a slightly different subset of the data. There-
fore, the selected features differed slightly from fold to
fold. The relevant features were restricted to those that
appeared in every fold of the LOOCV for each base
classifier [18, 19]. Additionally, it is well established
that the weight vector of a linear SVM classifier, which
has the same dimensions as the feature vector and is
normal to the hyperplane, represents the discrimina-
tive power of the features [27, 28]. The weight of these
relevant features is the average of the absolute weight
across all folds. The most discriminative features were
restricted to the first 20% relevant features with the
greatest weights. This threshold can eliminate noise
components to some extent, thus enabling better con-
centration on the most discriminative regions. Finally,
we set cluster size of 2,000 mm3 to better visualize the
most discriminative features of each metric.

RESULTS

Classification results

The prediction results of the fused classifier and
the three base classifiers (GMV-based, FA-based and
MD-based), as evaluated by LOOCV and 10-fold
cross-validation, are summarized in Table 2. Accord-
ing to the LOOCV, the fused classifier yielded a
classification accuracy of 83.59% with a significance
of p < 0.001 revealed by a permutation test. The sen-
sitivity and specificity were 78.13% and 89.06%,
whereas the PPV and NPV were 87.72% and 80.28%.
These results were better than the values obtained from

Table 2
Prediction results of the fused classifier and the three base classifiers

evaluated by LOOCV and 10-fold cross-validation

Accuracy Sensitivity Specificity PPV NPV
(%) (%) (%) (%) (%)

LOOCV
Fused 83.59% 78.13% 89.06% 87.72% 80.28%
GMV-based 76.56% 75.00% 78.13% 77.42% 75.76%
FA-based 75.78% 68.75% 82.81% 80.00% 72.60%
MD-based 78.91% 71.88% 85.94% 83.64% 75.34%
10-fold
Fused 83.70% 78.64% 88.75% 87.55% 80.61%
GMV-based 77.65% 75.11% 80.19% 79.18% 76.34%
FA-based 74.65% 69.64% 79.66% 77.41% 72.42%
MD-based 79.46% 73.13% 85.80% 83.80% 76.16%

the classifiers based on any single metric, which sug-
gests that integrating sMRI and DTI was advantageous
in identifying aMCI patients. The 10-fold cross-
validation yielded the average classification accuracies
of the fused classifier, GMV-based classifier, FA-based
classifier and MD-based classifier of 83.70%, 77.91%,
74.26% and 79.59%, respectively. These results were
similar to those of the LOOCV, which indicates the
robustness of our results.

The ROC curves for the fused classifier and the
single-metric based classifiers are shown in Fig. 2A.
The AUC of the fused classifier was 0.862, which a
permutation test demonstrate was significantly higher
than chance (p < 0.001). The GMV-based, FA-based
and MD-based classifiers were 0.823, 0.786 and 0.856,
respectively.

Figure 2B displays the classification scores for all
subjects. The positive scores denote aMCI individu-
als, and the negative scores denote the controls. As
shown in the figure, 14 aMCI patients were misclas-
sified as controls, and 7 controls were misclassified
as aMCI patients. The classification scores were sig-
nificantly correlated with performance on the MMSE
(r = −0.382, p < 0.0001) across all subjects, which sup-
ports the validity of the fused classifier. Within each
group, there were no such significant correlations
(aMCI, p = 0.833; control, p = 0.503).

Discrimination maps of aMCI-specific
abnormalities

GMVs acquired from the sMRI and the FAs/MDs
acquired from the DTI were used to train the three base
classifiers. The discrimination maps, i.e., the spatially
distributed patterns of regions with the greatest con-
tributions to the discrimination weights, for each base
classifier are illustrated in Fig. 3, detailed in Table 3 and
described below. Each discrimination map is a spatial
representation of the SVM weight vector and shows
the relative contribution of each voxel to the classifica-
tion. The maps suggest there are abnormalities of GM
or WM in aMCI patients compared to the NCs.

GMV-based classifier

The discriminative GMV pattern for classifying
the aMCI and the NC groups included the follow-
ing regions in both hemispheres: the inferior temporal
gyrus, the superior temporal gyrus, the Heschl gyrus,
the inferior frontal gyrus, the middle frontal gyrus,
the thalamus, the angular gyrus, the inferior parietal
lobule, the hippocampus, and the parahippocampal
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Fig. 2. Classification performance. A) The ROC curves for the fused, GMV-based, FA-based, and MD-based classifiers. AUC of the fused,
GMV-based, FA-based, and MD-based classifiers were 0.862, 0.823, 0.786, and 0.856, respectively. B) Scatter plot of the classification scores
of all subjects for the fused classifier. Here, individuals with positive scores were classified as aMCI, and individuals with negative scores were
classified as NC. There is a significant correlation between the classification scores (distance from the hyperplane) and the MMSE scores across
all subjects.

gyrus; thefollowinglefthemisphereregions: themiddle
temporalgyrus, thesupramarginalgyrus, theamygdala,
the cerebellum, the inferior occipital gyrus, the insula,
and the middle occipital gyrus; and the following right
hemisphere regions: the precuneus, the posterior cingu-
late gyrus, the gyrus rectus, the superior frontal gyrus,
the temporal pole, and the Rolandic operculum.

FA-based classifier

The FA discriminative pattern included the follow-
ing bilateral regions: the body of corpus callosum, the
superior parietal blade, the parieto-temporal blade, the

anterior corona radiata, the superior frontal blade, the
posterior thalamic radiation, and the occipital blade;
the following left hemisphere regions: the posterior
corona radiata, the superior corona radiata; and the
following right hemisphere regions: the cingulum (cin-
gulate gyrus), the middle frontal blade, the inferior
frontal blade, the retrolenticular part of internal cap-
sule, and the inferior fronto-occipital fasciculus.

MD-based classifier

The MD discriminative pattern consisted of the fol-
lowing bilateral regions: the body of corpus callosum,
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Fig. 3. Regions exhibiting high discrimination weights between the aMCI and control groups. A) GMV discrimination map. B) FA discrimination
map. C) MD discrimination map.

the genu of corpus callosum, the splenium of corpus
callosum, the temporal blade, the occipital blade, the
superior frontal blade, and the middle frontal blade;
the following left hemisphere regions: the cingulum
(cingulate gyrus), the cingulum (hippocampus), the
superior corona radiata, and the superior parietal blade;
and the following right hemisphere regions: the pos-
terior thalamic radiation, the pre-central blade, the
post-central blade, the inferior frontal blade, the crus
of the fornix, and the parieto-temporal blade.

DISCUSSION

Based on the whole-brain GMV, FA, and MD maps
derived from sMRI and DTI, the current study presents
a multivariate classification framework for distinguish-
ing aMCI patients from normal controls that achieved
good discriminative power (accuracy: 83.59%; sensi-
tivity: 78.13%; and specificity: 89.06%). Interestingly,
widespread GM and WM regions made a substantial
contribution to this discrimination.

To date, very few studies have combined sMRI and
DTI to identify aMCI patients. To our knowledge, only
Cui and colleagues have combined subcortical volu-
metric measures and the FAs of several WM regions
to classify aMCI and NC groups [11]. In contrast, the
analyses in our study were conducted using whole-
brain voxel-based maps of GMV, FA and MD. This

approach led to greatly improved prediction power.
These findings imply the substantial contributions of
the brain regions that were excluded by Cui et al. [11]
to aMCI classification.

Identification of aMCI using neuroimaging
markers

Currently, the diagnosis of aMCI primarily relies on
behavioral assessment. One primary drawback of the
present approach to diagnosis is that the behavioral
phenotypes of aMCI can be contaminated by other
psychological and psychiatric disorders. Addition-
ally, cognitive reserve might hide the representative
behavioral symptoms of aMCI to some extent [29].
Therefore, objective biomarkers that are less affected
by cognitive reserve are necessary for aMCI diagno-
sis. In this study, a multi-modal MRI-based classifier
was proposed that could correctly classify 83.59% of
all cases with a sensitivity of 78.13% and a specificity
of 89.06% as evaluated by LOOCV. Notably, the con-
sistent classification performance was acquired when
the 10-fold cross-validation was applied for evaluation,
which indicates the robustness of our results (Table 2).
The good and stable classification performance of this
system indicates that this approach will have diagnostic
value in clinical settings.
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Table 3
Regions exhibiting high discrimination weights between the aMCI and control groups in terms of GMV, FA, and MD

Metric Region size x y z w

GMV
Middle temporal gyrus L 2973 +54.0 +37.5 −1.5 0.0062
Inferior temporal gyrus L
Superior temporal gyrus L
Heschl gyrus L
Precuneus R 2102 −6.0 +66.0 +57.0 0.0071
Posterior cingulate gyrus R
Inferior frontal gyrus, orbital part L 1887 +42.0 −28.5 +1.5 0.0074
Inferior frontal gyrus, triangular part L
Inferior frontal gyrus, opercular part L
Insula L
Angular gyrus L 1877 +40.5 +54.0 +40.5 0.0070
Inferior parietal L
Middle occipital L
Supramarginal gyrus L
Amygdala L 1389 +12.0 +3.0 −31.5 0.0055
Hippocampus L
Parahippocampal gyrus L
Gyrus rectus R 1389 −6.0 −52.5 −19.5 0.0057
Superior frontal gyrus, orbital part R
Middle frontal gyrus, orbital part L
Cerebellum Crus1 L 1314 +52.5 +54.0 −37.5 0.0062
Cerebellum 6 L
Angular gyrus R 1308 −37.5 +73.5 +46.5 0.0072
Inferior parietal R
Inferior temporal R 1251 −45.0 −4.5 −34.5 0.0092
Hippocampus R 1221 −24.0 +42.0 +3.0 0.0061
Parahippocampal gyrus R
Inferior temporal gyrus L 1189 +39.0 +79.5 −7.5 0.0078
Middle temporal gyrus L
Inferior occipital gyrus L
Thalamus 898 −3.0 +7.5 −1.5 0.0071
Middle frontal gyrus R 872 −39.0 −42.0 −3.0 0.0064
Inferior frontal gyrus, orbital part R
Superior temporal gyrus R 759 −51.0 +4.5 +3.0 0.0051
Heschl gyrus R
Rolandic operculum R
Temporal pole: middle temporal gyrus R 713 −21.0 −10.5 −33.0 0.0055
Temporal pole: superior temporal gyrus R

FA
Posterior corona radiata L 565 +32.0 +58.0 +40.0 0.019
Superior parietal blade L
Parieto-temporal blade L
Body of corpus callosum 537 +14.0 +4.0 +40.0 0.014
Anterior corona radiata L
Superior corona radiata L
Superior frontal blade L
Cingulum. (cingulate gyrus) R 415 −14.0 +72.0 +40.0 0.019
Superior parietal blade
Posterior thalamic radiation R 282 −38.0 +72.0 +8.0 0.013
Occipital blade R
Middle frontal blade R 281 −36.0 +2.0 +46.0 0.013
Anterior corona radiata R 279 −28.0 −28.0 −4.0 0.011
Inferior frontal blade R
Retrolenticular part of internal capsule R 277 −28.0 +4.0 −20.0 0.016
Inferior fronto-occipital fasciculus R
Posterior thalamic radiation L 271 +36.0 +66.0 +10.0 0.010
Occipital blade L
Anterior corona radiata R 267 −12.0 −42.0 +26.0 0.013
Superior frontal blade R
Parieto-temporal blade R 261 −50.0 +42.0 +22.0 0.019

(Continued)
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Table 3
(Continued)

Metric Region size x y z w

MD
Splenium of corpus callosum 1834 +44.0 +22.0 −24.0 0.016
Temporal blade L
Occipital blade L
Cingulum (hippocampus) L
Genu of corpus callosum 1374 +2.0 −12.0 +26.0 0.014
Body of corpus callosum
Superior corona radiata L
Cingulum (cingulate gyrus) L
Posterior thalamic radiation R 738 −38.0 +72.0 +8.0 0.018
Occipital blade R
Splenium of corpus callosum
Tapetum R
Pre-central blade R 448 −44.0 +6.0 +46.0 0.014
Post-central blade R
Superior frontal blade L 431 +40.0 −2.0 +38.0 0.016
Middle frontal blade L
Middle frontal blade R 377 −32.0 −18.0 +46.0 0.014
Superior frontal blade R 372 −36.0 −46.0 −2.0 0.022
Inferior frontal blade R
Crus of fornix R 357 −34.0 +12.0 −18.0 0.010
Temporal blade R
Body of corpus callosum 328 −10.0 −36.0 +42.0 0.012
Superior frontal blade R
Superior parietal blade L 257 +32.0 +58.0 +40.0 0.014
Parieto-temporal blade R 253 −48.0 +36.0 +8.0 0.016

L, left; R, right.

It has been established that different parameters
extracted from various modalities complement each
other, and these parameters will always provide more
comprehensive characterization of brain abnormalities
when they are combined [18, 30]. In our study, GMV,
FA, and MD were combined as classification features.
The combined features resulted in greater classifi-
cation accuracy than either feature alone (Table 2),
which suggests that the three metrics are complemen-
tary when used for classifying aMCI and NC groups.
Many prior studies have similarly revealed that aMCI is
accompanied by GM abnormalities and WM integrity
alterations [8, 10]. More generally, the good classifi-
cation results of the combined classifier validated the
value of integrating multi-modal parameters for clas-
sification.

GM and WM abnormalities in aMCI

GM discriminative regions
The following GM regions made the greatest contri-

butions and have consistently exhibited abnormalities
in previous studies: precuneus and insula [8, 31], pos-
terior cingulate gyrus [31, 32], hippocampus [9, 33],
parahippocampal gyrus [34, 35], superior temporal
gyrus [4, 36], inferior temporal gyrus [37, 38], mid-

dle temporal gyrus [38], temporal pole [39], superior
frontal gyrus [38], inferior frontal gyrus [12, 38], mid-
dle frontal gyrus [40], supramarginal gyrus [39, 41],
angular gyrus [39], inferior parietal lobule [38, 42],
amygdala and thalamus [43], occipital gyrus [5, 42],
and cerebellum [44].

Specifically, the temporal lobe, precuneus, and pos-
terior cingulate gyrus abnormalities were the most
obvious when the GMVs were used to identify the
aMCI patients. Abnormal regions with high discrim-
inative weights were present in the medial temporal
lobe, precuneus, and posterior cingulate gyrus, and
these areas participate in the encoding, storage, or
retrieval of episodic memories [45–47]. Moreover,
the frontal lobe is also involved in the encoding and
retrieval of episodic memory and the dysfunctions of
the frontal lobe in aMCI may play a role in episodic
memory impairment [47, 48]. Additionally, we also
observed abnormalities in the cerebellum, which plays
a significant role in sensorimotor control in cogni-
tion and affect and might impact executive function
[49, 50]. Significant GMV reductions in the gyrus rec-
tus have been observed in the brains of AD patients
[51] but not in the brains of patients with early stage
AD (i.e., aMCI). aMCI patients are known to have
a greater tendency to progress to AD, which might
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suggest that some aMCI patients already exhibited cer-
tain anomalies in regions with alterations that can only
be observed in AD patients (e.g., the gyrus rectus).

WM discriminative regions
The WM regions selected by our method included

the regions with abnormal FAs or MDs, and similar
findings have been reported in several previous studies.
The most discriminative WM regions revealed by FA
include the superior parietal blade, parieto-temporal
blade, frontal blade, cingulum, occipital blade [52, 53],
corona radiata, body of the corpus callosum, inter-
nal capsule, posterior thalamic radiation [54], and
right inferior fronto-occipital fasciculus [53]. The MD
discrimination map consists of the corpus callosum,
frontal blade, temporal blade, occipital blade, parieto-
temporal blade, left cingulum (cingulate gyrus and
hippocampus) [52], crus of the fornix [11, 53], left
superior corona radiata, posterior thalamic radiation
[54], right pre-central blade, and post-central blade
[55].

We observed obvious WM disruptions in the corpus
callosum, cingulum (cingulate gyrus and hippocam-
pus), corona radiata, frontal lobe, and parietal lobe in
the aMCI patients. Specifically, the corpus callosum
and cingulum are the most commonly damaged areas in
the WM pathways in aMCI patients and are also impor-
tant parts of the Papez circuit [56], which is involved
in short-term memory. Additionally, the frontal and
parietal lobes are associated with the working memory
[57]. WM lesions in these regions are closely related to
memory impairment symptoms. Moreover, the parietal
WM has a strong structural connection with extensive
regions and plays an important role in language and
semantic processing, spatial attention, orientation, and
verbally mediated fact retrieval [58].

Pathological mechanism of GM/WM
discrimination in aMCI

Notably, the different measures reflect different neu-
ropathological and neurophysiological processes, and
the region- and parameter-dependent variations might
reflect the pathology/pathophysiology of aMCI. GMV
mainly reflects the number of neurons within an onto-
genetic column, and our results might be indicative of
cellular changes in the discriminative GM regions in
aMCI. Our discrimination maps revealed that the GM
discriminative regions in aMCI were mainly located
in the medial temporal lobe, temporal lobe, cingulate
gyrus, parietal lobe, and frontal lobe. These findings
correlate with the pathological process of AD. The
early loss of neurons begins in the medial temporal

lobe and gradually extends to the parietal and frontal
cortices and suggests the degeneration and degradation
of synapse-associated cortical pathways [59].

In contrast, FA reflects the degree of diffusion
anisotropy that is determined by the fiber diameter and
density and the degree of myelination, whereas MD
can indirectly reflect the extracellular space, which is
related to the density of the nerve fibers [60]. Decreased
FA and increased MD always indicate impaired WM
fiber tract integrity [61]. We found that the areas that
made the greatest contributions to the classification
in terms of both FA and MD included the body of
corpus callosum, left superior parietal blade, superior
corona radiata, right parieto-temporal blade, middle
frontal blade, inferior frontal blade, posterior thalamic
radiation, bilateral superior frontal blade, and occipital
blade. These findings indicate that myelin or oligo-
dendrocyte damage was present in these areas and led
to degenerative changes in the myelinated nerve fiber
bundles that further affected the cognitive activities
of the patients [62]. Additionally, we observed that
the most discriminative MD regions were more exten-
sive than the most discriminative FA regions (Fig. 3).
Therefore, MD might be more sensitive than FA in the
detection of the early changes of WM microstructures
in prodromal AD [63]. Therefore, it can be speculated
that there might be greater changes in the absolute
dimensions of the diffusion ellipsoid than in the shape
of the diffusion ellipsoid in the very early stage of
AD, and this speculation agrees with the findings of
previous studies [63, 64].

Several studies have reported that abnormal WM
tracts are related to GM abnormalities in AD [65,
66]. In this study, we also found several GM discrim-
inative regions that were distributed symmetrically in
both sides. These findings might be related to the
corpus callosum, which contains the largest group of
association fibers that pass between the left and right
hemispheres. However, the relationship between WM
and GM changes in aMCI is controversial, and our
results did not reveal very strong positional congruent
correlations between the WM and GM discriminative
regions (Fig. 3). Therefore, we speculated that par-
tial relationships between WM and GM abnormalities
could not reflect the causality as has been suggested
in some previous studies [10, 65, 67]. WM regions
with alterations and GMV abnormal regions in aMCI
patients were not entirely consistent. For example, the
WM alterations more severe than GM abnormalities in
the frontal lobe, whereas the opposite trend occurred in
the rear section of the brain (Fig. 3). These findings sup-
port the idea that the WM damage pattern is different



A
U

TH
O

R
 C

O
P

Y

520 Y. Xie et al. / Identify aMCI Using Multi-Modal Imaging Data

from the GM pattern in early AD, and oligodendrocytes
in regions where the myelin is formed later are more
easily damaged by free radicals and other metabolites.
Therefore, the WM in these regions is also the first
WM to become involved in early AD [68].

Limitations

Although the proposed classification framework
achieved good aMCI identification accuracy, several
limitations of the present study should be noted.
First, whereas the leave-one-out and 10-fold cross-
validations were both used to evaluate the performance
of our method and somewhat validated the robust-
ness and stability of our results, these results need
to be validated with an independent data set in the
future. Second, only sMRI and DTI were combined
in the present study and additional more neuroimaging
modalities, such as resting state functional MRI, can be
further integrated and might further improve the classi-
fication accuracy. Third, the present study was based on
cross-sectional datasets. Longitudinal follow-up stud-
ies should be conducted to further validate our results.
Finally, given substantial false positive and false nega-
tive results in our study, the interpretation of the most
discriminative regions should be taken into account
with caution.

CONCLUSIONS

Based on the structural MRI and DTI data, the
current study proposed a method for identifying
aMCI patients that exhibited good accuracy (accuracy:
83.59%; sensitivity: 78.13%; and specificity: 89.06%).
Our findings suggest that aMCI is characterized by a
distributed pattern of GM abnormalities and WM alter-
ations that have discriminative power and can reflect
relevant pathological changes in the brain. These find-
ings highlight the advantage of multi-modal feature
integration for identifying aMCI.
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